Un experimento explica por qué la materia sobrevivió después del Big Bang

Una asimetría en el comportamiento de los neutrinos podría explicar por qué la materia dominó a la antimateria, lo que acabó permitiendo nuestra existencia

Publicado en abc.es ver el enlace al final para leer el artículo completo

Una ecuación escrita en 1928 por el físico Paul Dirac cambió nuestra forma de entender el universo. Dicha ecuación, que combina la mecánica cuántica con la relatividad, explica el comportamiento de un electrón y tiene dos soluciones: una positiva y otra negativa. A partir de ahí, Dirac interpretó que si existía un electrón, con carga negativa, también debía de existir un positrón, una partícula idéntica pero con carga positiva. De hecho, sugirió que debía existir una antipartícula para cada partícula, con cargas opuestas, y así nació, poco a poco, el concepto de materia y de antimateria.

Sabemos que cuando la materia y la antimateria entran en contacto se convierten en energía, tal como describe la famosa ecuación de Einstein (E=mc^2). El fondo cósmico de microondas, un eco del Big Bang que pueden detectar los telescopios, sugiere que así fue durante un tiempo, y que, cuando el universo estaba naciendo, materia y antimateria se aniquilaron. Si ambas hubieran estado distribuidas de la misma forma y en la misma cantidad, hoy no estaríamos aquí: el universo estaría vacío y solo habría radiación. Por eso, los científicos consideran que nuestra existencia se debe a una pequeña diferencia entre materia y antimateria: parece ser que la segunda se degradó más rápido que la primera. Comprender por qué es uno de los misterios más profundos de la Física.

Este miércoles, un estudio publicado en la portada de la revista «Nature» ha dado un paso adelante en la investigación de este misterio. Un consorcio de 500 científicos de 12 instituciones ha sacado a la luz los resultados del experimento T2K (Tokai to Kamioka), un ambicioso proyecto que lanza neutrinos desde la ciudad de Tokai, en Japón, hasta un detector situado en Kamioka, a 295 kilómetros de distancia. Sus resultados han sugerido que los neutrinos y los antineutrinos no se comportan de la misma forma, lo que indica que estas partículas podrían estar detrás del desequilibrio entre materia y antimateria que tan misterioso resulta

Una feliz casualidad

«Que existamos gracias a un pequeño desequilibrio es realmente una idea muy interesante», ha explicado a ABC Thorsten Lux, coautor del trabajo y científico en el Instituto de Física de Altas Energías (IFAE) en Barcelona. «Desde los años sesenta los físicos tratan de comprender los procesos que causan esta asimetría. Entonces se observó este efecto en los quarks, los constituyentes de protones y neutrones, pero su contribución es demasiado pequeña como para explicar la cantidad de materia en el universo, así que se concluyó que tenía que haber otros procesos», ha relatado.

Según otros modelos, otra de las opciones es que esta asimetría entre materia y antimateria pueda explicarse gracias a los leptones, entre los que están los electrones y los neutrinos. En este sentido, Lux ha subrayado: «Nuestro estudio es la primera indicación fuerte de que este modelo es correcto y que ésta podría ser la contribución dominante a la asimetría materia/antimateria en el universo».

La respuesta, en los fantasmas neutrinos

Esta indicación procede de los neutrinos. Son partículas muy ligeras que viajan a la velocidad de la luz y que son generados en el Sol, en supernovas u otras fuentes. A diferencia de otras partículas, son auténticos proyectiles fantasmales que nos atraviesan sin que nos demos cuenta (en números de billones casa segundo), porque solo muy rara vez interaccionan con los núcleos de los átomos (lo hacen a través de la interacción electrodébil, una de las cuatro fundamentales). Por suerte para los científicos, cuando los neutrinos interaccionan con los nucleos liberan fotones que los detectores pueden captar.

Estos neutrinos tienen, que se sepa, tres sabores (que se llaman muón, electrón y tau), entre los que «oscilan» a medida que van viajando (descubrir esto fue premiado con el Nobel de Física en 2015). Pues bien, los científicos estudian estos cambios de sabor tanto en neutrinos como antineutrinos para averiguar si ocurren con la misma probabilidad o no. Si no fuera así, obtendrían un indicio que podría ayudar a explicar por qué hoy el universo está compuesto de materia y no de antimateria.

En Japón hay unas instalaciones impresionantes tratando de resolver a esta pregunta. En la ciudad de Tokai, cerca de la costa oriental del Japón, hay un acelerador (el J-PARC) capaz de lanzar un haz de neutrinos, o de antineutrinos, hasta el otro extremo del país, en la ciudad de Kamioka, a 295 kilómetros de distancia. Allí hay un gigantesco detector de neutrinos, el SuperKamiokande (SuperK), capaz de decirnos cómo van cambiando los sabores de estas partículas y antipartículas. Este detector consiste en un tanque de 50.000 toneladas de agua ultrapura forrado por 13.000 fotosensores, y situado a un kilómetro bajo la superficie.

Para producir estos neutrinos, el J-PARC lanza haces de protones contra un blanco de grafito, lo que produce unas partículas que son encauzadas con imanes, y que acaban decayendo en neutrinos (entre otras cosas). La forma como son producidos facilita que estos oscilen tras recorrer unos 295 kilómetros, de ahí la distancia a la que está el detector SuperK.

Leer aquí el artículo completo: leer